
Course Title

From Bugs to Brilliance:
Mastering

java.util.concurrent
Dr Heinz M. Kabutz 

Last Updated 2025-10-01 

© 2025 Heinz Kabutz – All Rights Reserved

1

Course Title

A Tale of java.util.Vector
๏ One of the first classes in Java

– Part of Java 1.0

๏ Designed thread-safe from concurrent updates
– Most methods synchronized, locking on "this"

• But missed synchronization on read-only methods like size()

2

Course Title

Java 1.0 Vector
๏ size() could return stale values

3

public class Vector1_0 {
 protected int elementCount;

 public final int size() {
 return elementCount;
 }

 public final synchronized void addElement(Object obj) {
 // ...
 }
}

Course Title

Moving to Java 1.1
๏ Introduced a potential race condition

4

public class Vector1_1 implements java.io.Serializable {
 protected int elementCount;

 public final int size() {
 return elementCount;
 }

 public final synchronized void addElement(Object obj) {
 // ...
 }
}

Course Title

Moving to Java 1.4
๏ Fixed size() visibility and serialization race condition

5

public class Vector1_4 implements java.io.Serializable {
 protected int elementCount;

 public synchronized int size() {
 return elementCount;
 }
 public synchronized void addElement(Object obj) {
 // ...
 }
 private synchronized void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();
 }
}

Course Title

However, Java 1.4 Can Deadlock!
๏ Often, fixing one type of bug, introduces others

– Mentioned in The Java Specialists' Newsletter #184

• https://www.javaspecialists.eu/archive/Issue184.html

6

Vector v1 = new Vector();
Vector v2 = new Vector();
v1.addElement(v2);
v2.addElement(v1);
// serialize v1 and v2 from two different threads

Course Title

Moving to Java 1.7
๏ Fixed by calling writeFields() outside of lock

7

public class Vector1_7 implements Serializable {
 private void writeObject(java.io.ObjectOutputStream s)
 throws java.io.IOException {
 final java.io.ObjectOutputStream.PutField fields =
 s.putFields();
 final Object[] data;
 synchronized (this) {
 fields.put("capacityIncrement", capacityIncrement);
 fields.put("elementCount", elementCount);
 data = elementData.clone();
 }
 fields.put("elementData", data);
 s.writeFields();
 }
}

Course Title

New Potential Deadlock in Java 8
๏ Shouldn't call "alien method" accept() whilst locked

8

public class Vector8<E> implements Serializable {
 public synchronized void forEach(Consumer<? super E> action) {
 Objects.requireNonNull(action);
 final int expectedModCount = modCount;
 @SuppressWarnings("unchecked")
 final E[] elementData = (E[]) this.elementData;
 final int elementCount = this.elementCount;
 for (int i=0; modCount == expectedModCount &&
 i < elementCount; i++) {
 action.accept(elementData[i]);
 }
 if (modCount != expectedModCount) {
 throw new ConcurrentModificationException();
 }
 }
}

Course Title

Takeaways from Vector Bugs
๏ Thread safety is subtle

๏ Tests don’t always expose concurrency bugs
– We need to know what to look for

9

Course Title

java.util.concurrent
Teardown

10

Course Title

Writing Correct Thread-Safe Code is a Challenge
๏ The Java Memory Model is our rule book

– happens-before, ordering, access safety, etc.

– However, we cannot test whether a class adheres to JMM 100%

๏ We run our code, and hope it works correctly
– Some bugs are very hard to detect

11

Course Title

LockSupport Rare Lost unpark()
๏ Bug 8074773

– In JDK 7, class loading could consume the unpark()

• Extremely hard to diagnose and discover, took a week of CPU time

• Recommended workaround: force LockSupport to load early

– Since JDK 9, ConcurrentHashMap loads LockSupport

12

static {
 // Prevent rare disastrous classloading in first call to LockSupport.park.
 // See: https://bugs.openjdk.java.net/browse/JDK-8074773
 Class<?> ensureLoaded = LockSupport.class;
}

Course Title

So Why Study the java.util.concurrent
๏ Brian Goetz, JCiP:

– If you need to implement a state-dependent class the best
strategy is usually to build upon an existing library class such as
Semaphore, BlockingQueue, or CountDownLatch.

๏ By studying java.util.concurrent in detail, we learn
– What is available

– How to write robust, thread-safe classes

13

Course Title

Good vs Bad Code
๏ We all make mistakes

– In German, we say: „Vertrauen ist gut, Kontrolle ist besser!“

– Test Driven Development

• Super difficult with multi-threaded code

• Java Concurrency Stress can help: github.com/openjdk/jcstress

๏ Better to rely on well-known synchronizers
– And then, use those that are most commonly used

• Favour ConcurrentHashMap over ConcurrentSkipListMap

• Favour LinkedBlockingQueue over LinkedBlockingDeque

14

Course Title

Contributing Bug Reports
๏ Anybody can report a Java bug: https://

bugreport.java.com
– I've reported quite a few javaspecialists.eu/about/jdk-

contributions/

– Most of these were in little used classes

• 1 in LinkedTransferQueue (fixed in Java 1.8.0+70)

• 1 in ThreadLocalRandom (fixed in Java 21+9)

• 1 in ConcurrentSkipListMap (fixed in Java 24)

• 1 in ArrayBlockingQueue (fixed in Java 24)

• 5 in LinkedBlockingDeque (all fixed in Java 26)

– The less used a class is, the higher the chance of bugs

15

Course Title

Eat Your Own Dogfood Collections
๏ How many new instances of each in the JDK

– 213: ConcurrentHashMap

– 11-24: CopyOnWriteArrayList, ConcurrentLinkedQueue,

ConcurrentLinkedDeque, FutureTask, LinkedBlockingQueue

– 2-6: CountDownLatch, ArrayBlockingQueue,

SynchronousQueue, ConcurrentSkipListSet

– 1: ConcurrentSkipListMap, LinkedBlockingDeque,

LinkedTransferQueue, Semaphore

– 0: CopyOnWriteArraySet, CyclicBarrier, Exchanger, Phaser,

PriorityBlockingQueue

16

Course Title

Let's Say That Again
๏ Use extremely common thread-safe classes

– ConcurrentHashMap

– LinkedBlockingQueue

– ConcurrentLinkedQueue

๏ I only found bugs in rarely used classes

17

Course Title

Before we continue ...
๏ Get our Data Structures in Java Course here

– tinyurl.com/ycrash25

– Coupon expires 16th October 2025 @ 10:30 Pacific Time

• You have life-time access to course

• But try complete before end December

18

Course Title

Lessons from
Striped64

19

Course Title

LongAdder vs AtomicLong
๏ Let's do a quick comparison of incrementing 100m

times
– AtomicLong vs LongAdder (Striped64)

20

IntStream.range(0, 100_000_000)
 .parallel()
 .forEach(_ -> atomicLong.getAndIncrement());

IntStream.range(0, 100_000_000)
 .parallel()
 .forEach(_ -> longAdder.increment());

tinyurl.com/ycrash25

Course Title

Demo
๏ Magic? Let's look how LongAdder / Striped64 work

21

tinyurl.com/ycrash25

Course Title

Takeaways
๏ Best way to deal with contention is to not have any

22

tinyurl.com/ycrash25

Course Title

Changing
Hardware

Landscape

23

Course Title

Changing Hardware Landscape
๏ Started coding Java in 1997

– 64 MB of RAM, single core, 233 MHz, 32 bit

• And that was one of the better machines in the company

– My laptop has 96 GB of RAM, 12 cores, 38 GPU cores, 3.7GHz,
64-bit

๏ Memory was scarce
– Could not imagine creating a collection with billions of entries

– Only platform threads - limited to thousands

24

Course Title

Bugs at the Limits
๏ Oodles of memory and virtual threads

– Bug in LinkedBlockingDeque allowed us to fill it with too many
items

• size() returned a negative value

• Fixed in Java 26

– Bug in ReentrantReadWriteLock ran out of read locks after 65536

• Resulted in Error being thrown

– Could not have conceived a system with that many threads

• Fixed in Java 25

๏ Demo: ManyReadLocks

25

Course Title

StartingGun
Synchronizer

26

Course Title

StartingGun Synchronizer
๏ Let's say we have a service that takes time to be

started
– Any other part of the system that depends on it should wait

• But we do not want to deal with InterruptedException

– Once all the data is set up, we call ready(), awaking waiting
threads

27

public interface StartingGun {
 void awaitUninterruptibly();
 void ready();
}

Course Title

synchronized and wait()/notifyAll()

28

public class StartingGunMonitor implements StartingGun {
 private boolean ready = false;
 public synchronized void awaitUninterruptibly() {
 boolean interrupted = Thread.interrupted();
 while (!ready) {
 try {
 wait(); // not compatible with older Loom versions
 } catch (InterruptedException e) {
 interrupted = true;
 }
 }
 if (interrupted) Thread.currentThread().interrupt();
 }
 public synchronized void ready() { ready = true; notifyAll(); }
}

Course Title

StartingGun using CountDownLatch

29

public class StartingGunCountDownLatch implements StartingGun {
 private final CountDownLatch latch = new CountDownLatch(1);
 public void awaitUninterruptibly() {
 var interrupted = Thread.interrupted();
 while (true) {
 try {
 latch.await();
 break;
 } catch (InterruptedException e) {
 interrupted = true;
 }
 }
 if (interrupted) Thread.currentThread().interrupt();
 }
 public void ready() { latch.countDown(); }
}

Course Title

Issues With These Approaches
๏ Synchronized wait() not fully compatible with virtual

threads
– Fixed in Java 24

๏ Both times, interrupt would cause
InterruptedException

– We hide it, but we still pay the cost of creating the exception

๏ Another way is to copy what CountDownLatch does
– Quick demo

30

Course Title

Lock Splitting:
LinkedBlockingQueue

31

Course Title

LinkedBlockingQueue Design
๏ Single lock would cause put()/take() contention

๏ Has separate putLock and takeLock ReentrantLock
– We can put() and take() from a single queue at the same time

– Has higher throughput for the SPSC case

• And surprises for the SPMC case

– Subtleties regarding visibility due to two locks

• Use AtomicInteger count as a volatile synchronizer

๏ Demo LockSplittingDemo

32

Course Title

Weakly Consistent
Iterators –

ArrayBlockingQueue

33

Course Title

Circular Array Queue
๏ Weakly consistent iteration

– ArrayDeque would cause a ConcurrentModificationException

– However, what if we circle completely around the array?

• ArrayBlockingQueue has to notify its current iterators

– But how?

๏ Demo WeaklyConsistentViaWeakReferences

34

var queue = new ArrayBlockingQueue<Integer>(10);
Collections.addAll(queue, 1, 2, 3, 4, 5);
var iterator = queue.iterator();
for (int i = 0; i < 3; i++) System.out.println(iterator.next()); // 1,2,3
Collections.addAll(queue, 6, 7, 8, 9, 10);
iterator.forEachRemaining(System.out::println); // 4,5,6,7,8,9,10

Course Title

Double-Checked-
Locking –

CopyOnWriteArrayList

35

Course Title

CopyOnWriteArrayList DCL
๏ In several places, checks before locking

– Demo DCLOnSteroidsCOWDemo

36

public boolean remove(Object o) {
 Object[] snapshot = getArray();
 int index = indexOfRange(o, snapshot, 0, snapshot.length);
 return index >= 0 && remove(o, snapshot, index);
}

Course Title

Conclusion

37

Course Title

The Java Specialists' Newsletter
๏ Make sure to join us

– www.javaspecialists.eu/archive/subscribe/

๏ Readers in 150+ countries

๏ 25 years of newsletters on advanced Java
– All previous newsletters available on www.javaspecialists.eu

– Longest running Java newsletter in the world

– Courses, consulting, additional training, etc.

38

http://www.javaspecialists.eu

Course Title

Don't Forget ...
๏ Get our Data Structures in Java Course here

– tinyurl.com/ycrash25

– Coupon expires 16th Oct 2025 at 10:30 Pacific Time

• You have life-time access to course

๏ For those watching the recording
– Sign up to The Java Specialists' Newsletter

• www.javaspecialists.eu

• Reply to the welcome mail that you would 

like this course

39

http://www.javaspecialists.eu

