J JavaSpecialists

/ﬁBugs to Brilliance:

Mastering
~_“““java.util.concurrent

e

/4
/ Dr Heinz M. Kabutz

/ Last Updated 2025-10-01

© 2025 Heinz Kabutz — All Rights Reserved

A Tale of java.util.Vector

® One of the first classes in Java
— Part of Java 1.0

® Designed thread-safe from concurrent updates

— Most methods synchronized, locking on "this”
» But missed synchronization on read-only methods like size()

Java 1.0 Vector

® size() could return stale values

public class Vectorl_0 {
protected i1nt elementCount;

public final int size() {
return elementCount;

}.

public final synchronized void addElement(Object obj) {

/] ...
!

Moving to Java 1.1

® Introduced a potential race condition

public class Vectorl_1 implements java.io.Serializable {
protected i1nt elementCount;

public final int size() {
return elementCount;

}.

public final synchronized void addElement(Object obj) {

/] ...
!

Moving to Java 1.4

® Fixed size() visibility and serialization race condition

public class Vectorl_4 implements java.io.Serializable {
protected i1nt elementCount;

public synchronized int size() {
return elementCount;

1

public synchronized void addElement(Object obj) A
/] ...

1

private synchronized void writeObject(0ObjectOutputStream s)
throws I0Exception {
s.defaultWriteObject();

However, Java 1.4 Can Deadlock!

@ Often, fixing one type of bug, introduces others

Vector vl = new Vector();

Vector v2 = new Vector():

vl.addElement(v2);

v2.addElement(vl);

// serialize vl and v2 from two different threads

— Mentioned in The Java Specialists' Newsletter #184
* https://www.javaspecialists.eu/archive/lssue184.html

Moving to Java 1.7

® Fixed by calling writeFields() outside of lock

public class Vectorl_7 implements Serializable {

private void writeObject(java.io.0ObjectOutputStream s)
throws java.io.IOException 1

final java.1o0.0bjectOutputStream.PutField fields =
s.putFields();

final Object[] data;

synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);

data = elementData.clone();

1
fields.put("elementData", data);

s.writeFields();

New Potential Deadlock in Java 8

® Shouldn't call "alien method" accept() whilst locked

public class Vector8<E> implements Serializable {
public synchronized void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action) ;
final 1nt expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final 1nt elementCount = this.elementCount;
for (int i=0; modCount == expectedModCount &&
i < elementCount; i++) {
action.accept(elementDatali]);
1
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();

}.

Takeaways from Vector Bugs

® Thread safety is subtle

® Tests don’t always expose concurrency bugs

— We need to know what to look for

\) J aVﬂSpecialistS

java.util.concurrent

- Teardown

,-/"’
-
/ -

/ /
[

‘l
!
!

10

11

Writing Correct Thread-Safe Code is a Challenge

@ The Java Memory Model is our rule book

— happens-before, ordering, access safety, etc.

— However, we cannot test whether a class adheres to JMM 100%

® We run our code, and hope it works correctly

— Some bugs are very hard to detect

12

LockSupport Rare Lost unpark()
® Bug 8074773

— In JDK 7, class loading could consume the unpark()
- Extremely hard to diagnose and discover, took a week of CPU time
« Recommended workaround: force LockSupport to load early

static {
// Prevent rare disastrous classloading in first call to LockSupport.park.
// See: https://bugs.openjdk.java.net/browse/JDK-8074773
Class<?> ensurelLoaded = LockSupport.class;

h — Since JDK 9, ConcurrentHashMap loads LockSupport

13

So Why Study the java.util.concurrent
@ Brian Goetz, JCIiP:

— |f you need to implement a state-dependent class the best
strategy Is usually to build upon an existing library class such as
Semaphore, BlockingQueue, or CountDownlLatch.

@ By studying java.util.concurrent in detail, we learn

— What Is available

— How to write robust, thread-safe classes

Good vs Bad Code

@ We all make mistakes

— In German, we say: ,Vertrauen ist gut, Kontrolle ist besser!”

— Test Driven Development
 Super difficult with multi-threaded code
- Java Concurrency Stress can help: github.com/openjdk/jcstress

@ Better to rely on well-known synchronizers

— And then, use those that are most commonly used
» Favour ConcurrentHashMap over ConcurrentSkipListMap
 Favour LinkedBlockingQueue over LinkedBlockingDeque

14

Contributing Bug Reports

@ Anybody can report a Java bug: https://
bugreport.java.com

— |'ve reported quite a few javaspecialists.eu/about/jdk-
contributions/

— Most of these were In little used classes
» 1 in LinkedTransferQueue (fixed in Java 1.8.0+70)
* 1 in ThreadLocalRandom (fixed in Java 21+9)
* 1 in ConcurrentSkipListMap (fixed in Java 24)
» 1In ArrayBlockingQueue (fixed in Java 24)
» 5 In LinkedBlockingDeque (all fixed in Java 26)

— The less used a class is, the higher the chance of bugs

15

Eat Your Own Dogfood Collections

@ How many new instances of each in the JDK

— 213: ConcurrentHashMap

- 11-24: CopyOnWriteArrayList, ConcurrentLinkedQueue,
ConcurrentLinkedDeque, FutureTask, LinkedBlockingQueue

— 2-6: CountDownlLatch, ArrayBlockingQueue,
SynchronousQueue, ConcurrentSkipListSet

— 1: ConcurrentSkipListMap, LinkedBlockingDeque,
LinkedTransferQueue, Semaphore

— 0: CopyOnWriteArraySet, CyclicBarrier, Exchanger, Phaser,
PriorityBlockingQueue

16

Let's Say That Again

® Use extremely common thread-safe classes

— ConcurrentHashMap
— LinkedBlockingQueue

— ConcurrentLinkedQueue

@ | only found bugs In rarely used classes

17

18

Before we continue ...

@ Get our Data Structures in Java Course here

— tinyurl.com/ycrash25

— Coupon expires 16th October 2025 @ 10:30 Pacific Time
* You have life-time access to course
» But try complete before end December

J JavaSpecialists

Lessons from

~ Striped64

--/”l
y
///

: /
[

‘l
!
!

19

tinyurl.com/ycrash25
Ofy- 40
I I- _H H
o

LongAdder vs AtomicLong

® Let's do a quick comparison of incrementing 100m
times
— AtomicLong vs LongAdder (Striped64)

IntStream.range()

NEREIAING
.forEach(_ -> atomicLong.getAndIncrement())

IntStream.range()
.parallel()
.forEach(_ -> longAdder.increment())

20

21

Demo
® Magic? Let's look how LongAdder / Striped64 work

tinyurl.com/ycrash25
Ofy- 40

- -']-

g

22

LlELGEVVEVE

@ Best way to deal with contention is to not have any

tinyurl.com/ycrash25

Of .}

- -1

e

J JavaSpecialists

//Chang Tale
Hardware
“ Landscape

-
e
el

J/
J/
.-"/

23

24

Changing Hardware Landscape

@ Started coding Java in 1997

— 64 MB of RAM, single core, 233 MHz, 32 bit
» And that was one of the better machines in the company

— My laptop has 96 GB of RAM, 12 cores, 38 GPU cores, 3.7GHz,
64-bit

@ Memory was scarce

— Could not imagine creating a collection with billions of entries

— Only platform threads - limited to thousands

25

Bugs at the Limits

@ Oodles of memory and virtual threads

— Bug in LinkedBlockingDeque allowed us to fill it with too many
items

» size() returned a negative value
* Fixed in Java 26

— Bug in ReentrantReadWriteLock ran out of read locks after 65536

» Resulted in Error being thrown
— Could not have conceived a system with that many threads

* Fixed In Java 25

@ Demo: ManyReadlLocks

J JavaSpecialists

D stiiadin

“Synchronizer

--/"l
y
///

: /
[

‘l
!
!

26

StartingGun Synchronizer

® Let's say we have a service that takes time to be
started
— Any other part of the system that depends on it should wait
» But we do not want to deal with InterruptedException
— Once all the data is set up, we call ready(), awaking waiting
threads

public interface StartingGun {
void awaitUninterruptibly();
void ready();

27

28

synchronized and wait()/notifyAll()

public class StartingGunMonitor implements StartingGun {
private boolean ready = false;
public synchronized void awaitUninterruptibly() {
boolean interrupted = Thread.interrupted();
while (!ready) A

wait(); // not compatible with older Loom versions
} catch (InterruptedException e) {
interrupted = true;

}.

1
if (interrupted) Thread.currentThread().interrupt();

!
public synchronized void ready() { ready = true; notifyAll1(); }

29

StartingGun using CountDownLatch

public class StartingGunCountDownLatch implements StartingGun {
private final CountDownLatch latch = new CountDownLatch(1);
public void awaitUninterruptibly() {
var interrupted = Thread.interrupted();
while (true) 4
try 1
latch.await();
break;
} catch (InterruptedException e) {
interrupted = true;

}.
}.

if (interrupted) Thread.currentThread().interrupt();

!
public void ready() { latch.countDown(); }

30

Issues With These Approaches

® Synchronized wait() not fully compatible with virtual
threads
— Fixed in Java 24

@ Both times, interrupt would cause
InterruptedException

— We hide it, but we still pay the cost of creating the exception

@ Another way is to copy what CountDownLatch does

— Quick demo

J JavaSpecialists

//LOck Splitting:

LinkedBlockingQueue

-
e
el

V4
J/
.-"/

31

32

LinkedBlockingQueue Design

@ Single lock would cause put()/take() contention

® Has separate putLock and takeLock ReentrantLock

— We can put() and take() from a single queue at the same time

— Has higher throughput for the SPSC case
» And surprises for the SPMC case

— Subtleties regarding visibility due to two locks
» Use Atomiclnteger count as a volatile synchronizer

® Demo LockSplittingDemo

J JavaSpecialists

/ﬁkIyConsistent

lterators -
~ ArrayBlockingQueue

33

Circular Array Queue

® Weakly consistent iteration

— ArrayDeque would cause a ConcurrentModificationException

— However, what if we circle completely around the array?

 ArrayBlockingQueue has to notify its current iterators
— But how?

@ Demo WeaklyConsistentViaWeakReferences

var queue = new ArrayBlockingQueue<Integer>(10);
Collections.addAll(queve, 1, 2, 3, 4, 5);

var iterator = gqueue.iterator();

for (int 1 = 0; i < 3; i++) System.ouvt.println(iterator.next()); // 1,2,3
Collections.addAll(queuve, 6, 7, 8, 9, 10);
iterator.forEachRemaining(System.out: :println); // 4,5,6,7,8,9,10

34

J JavaSpecialists

W-Checked-

LocKing -
CopyOnerteArrayLlst

35

CopyOnWriteArrayList DCL

® In several places, checks before locking
— Demo DCLONSteroidsCOWDemo

public boolean remove(Object o) {
Object[] snapshot = getArray();
int index = index0fRange(o, snapshot, 0, snapshot.length);
return index >= 0 && remove(o, snapshot, index);

36

vaSpecialists

Course Ti \37
I

The Java Specialists' Newsletter

@ Make sure to join us

— www.javaspecialists.eu/archive/subscribe/

@ Readers in 150+ countries

@ 25 years of newsletters on advanced Java

— All previous newsletters available on www.|javaspecialists.eu
— Longest running Java newsletter in the world

— Courses, consulting, additional training, etc.

38

http://www.javaspecialists.eu

Don't Forget ...

@ Get our Data Structures in Java Course here

— tinyurl.com/ycrash25

— Coupon expires 16th Oct 2025 at 10:30 Pacific Time
* You have life-time access to course

® For those watching the recording

— Sign up to The Java Specialists' Newsletter
* WWW.]avaspecialists.eu

* Reply to the welcome mail that you would
like this course

39

http://www.javaspecialists.eu

